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Abstract
We have studied Heisenberg antiferromagnets on two-dimensional frustrated
lattices—triangular and Kagomé lattices, using linear spin-wave theory. A
collinear ground state ordering is possible if one of the three bonds in each
triangular plaquette of the lattice becomes weaker or frustrated. We study spiral
order in the Heisenberg model along with Dzyaloshinskii–Moriya interaction
and in the presence of a magnetic field. The quantum corrections to the ground
state energy and sublattice magnetization are calculated analytically in the
case of a triangular lattice with nearest neighbour interaction. The corrections
depend on the DM interaction strength and the magnetic field. We find that the
DM interaction stabilizes the long-range order, reducing the effect of quantum
fluctuation. Similar conclusions are reached for the Kagomé lattice. We work
out the linear spin-wave theory at first with only the nearest-neighbour terms for
the Kagomé lattice. We find that the near-neighbour interaction is not sufficient
to remove the effects of low energy fluctuations. The flat branch in the excitation
spectrum becomes dispersive on inclusion of further neighbour interactions.
The ground state energy and the excitation spectrum have been obtained for
various cases.

1. Introduction

In the last few decades, geometrically frustrated antiferromagnets (AFMs) have become a very
important subject for both experimental and theoretical research [1]. The most extensively
studied systems in this category are the AFMs on the triangular and Kagomé lattices in two
dimensions and the pyrochlore lattice in three dimensions [2]. A large number of studies
have been devoted to the triangular lattice. Anderson [3] first proposed that the triangular
lattice Heisenberg antiferromagnet has a spin-disordered ground state, similar to the frustrated
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square lattices with further neighbour exchange. The resonating valence bond (RVB) state
is one of the possible candidates for the ground state in this regime. An estimate of ground
state energy has been obtained from various RVB-type variational wavefunctions [4, 5] and
from the variational estimates of Huse and Elser [6], but several other methods, such as spin
wave theory [7–9], variational calculations [10], exact diagonalization of small clusters [11]
and the Monte Carlo [12] numerical method have indicated the possibility of a long-range
order (LRO) with the ground state energy lower than the spin disordered states. The sublattice
magnetization is, however, reduced considerably (∼0.239) from its classical values (∼0.5) due
to quantum fluctuations. It is generally believed that the frustrated triangular lattice Heisenberg
antiferromagnet (HAFM) is quite similar to the square lattice, i.e., a ground state with long-
range order exists in both cases. The triangular quantum antiferromagnet (QAFM) is thought
to exhibit the well known long-range 120◦ order at T = 0. There is no experimental evidence
in favour of such a conclusion so far though. Experimental realizations of triangular lattice
HAFMs are materials like VCl2, VBr2, NaNiO2 etc. Possible ground state orderings in the
quantum antiferromagnets include Néel, helical, spin-liquid, spin-nematic, dimer or chiral
liquid. Dimer ordering is found for various SU(n) models for large n and may even survive in
the n → 2 limit, i.e., for S = 1/2, for models with competing further neighbour interactions.
Indeed, there is no experimental realization of LRO or spin-liquid ground states. The layered
insulating magnet Cs2CuCl4 [13], which is supposed to have some long-range order at very
low temperature (TN ∼ 0.62 K), can be described by an HAFM on a triangular lattice with
additional anisotropic interaction—the Dzyaloshinskii–Moriya (DM) interaction. The DM
interaction produces canting between the spins, and as a result weak ferromagnetism in the
AFM phase develops and staggered magnetization reduces.

Another example of a frustrated lattice in two dimensions is the Kagomé lattice, consisting
of corner-sharing triangles. This is a highly frustrated system with low coordination number.
Though there is no experimental evidence for spin-liquid or dimer ordered ground states so
far, it is expected to have [14–16, 24] a spin-liquid ground state and hence no particular long-
range ordering is favoured. In such cases, the ground state manifold is expected to have a
large number of nearly degenerate states. Physical examples of the Kagomé lattice include
second layer 3He on graphite, jarosites, MFe3(OH)6(SO4)2 (M = H3O, Na, K, Rb, Ag etc),
and SrCr8−x Ga4+x O19. Recently some magnetic structures of Fe and Cr jarosites have been
explored, and in order to explain the low-temperature behaviour of these compounds it was
proposed [17] that DM interaction may be present there. The low-temperature magnetic
structure is a long-range ordered state where all the spins have the same component in the
direction perpendicular to the Kagomé plane, giving rise to a weak ferromagnetism. A recently
developed system showing large magnetoresistance, the doped GdI2, [18] turns out to be
another example of a triangular lattice with several magnetic phases. It has a complicated
magnetic phase diagram showing broad transitions between ferro- and antiferromagnetic phases
and possible regions of disorder, short-range order or phase separation [19].

It is apparent that there is a lot of controversy about the ground state of such frustrated
lattices. Most of the studies done in these lattices are with the Heisenberg Hamiltonian only.
In view of this, we have undertaken to study the Heisenberg model along with anisotropic
DM interaction on both triangular and Kagomé lattices. In the present work we show that
anisotropic interaction like DM interaction stabilizes the LRO. It has been observed that the
effect of quantum fluctuation on the ground state energy and sublattice magnetization decreases
(i.e., the ground state energy decreases and the sublattice magnetization increases) as the
strength of DM interaction increases. In particular, we have studied the effect of this anisotropic
DM interaction on the ground state energy, sublattice magnetization and gap in the excitation
spectrum. The effect of external magnetic field has also been taken into account. This paper
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is organized as follows. In section 2, we write the general Hamiltonian and investigate the
possible ground states in the triangular and Kagomé lattices. In section 3 we study the collinear
and the spiral ordering in these frustrated lattices, using spin-wave theory, for the Heisenberg
Hamiltonian only. In section 4 we conclude with a summary of our results.

2. The general Hamiltonian

The most general spin Hamiltonian for two neighbouring spin-1/2 localized magnetic ions is
given by

Hi j = Ji j Si · Sj + Di j · Si × Sj + Si · A
↔

i j · Sj + hSi + hSj . (1)

The first term is the usual Heisenberg term. The second term is the anisotropic DM interaction
and the third term involving A

↔
i j is the anisotropic symmetric exchange interaction [20]. The

last term is the Zeeman term in a magnetic field. Here, the consequences of the DM interaction
on the low-temperature magnetic structures are explored in the case where D is perpendicular
to the lattice plane. In a magnetic insulator, in terms of the super-exchange mechanism, the
isotropic exchange Ji j is proportional to t2

i j/U , where ti j is the inter-site hopping and U is the
on-site Coulomb repulsion between electrons. It was shown by Moriya that |Di j | is proportional
to |λ(ti j/�U |, where λ is the spin–orbit coupling, � is the crystal field splitting and Ai j is
proportional to (λ2ti j/�

2U). The third term, being one order of magnitude smaller than DM
interaction, can, therefore, be neglected. In addition, a magnetic field in the plane is introduced.
Finally, under such approximations, we take the Hamiltonian as

H = J
∑

〈i, j〉
Si · Sj + D ·

∑

〈i, j〉
Si × Sj + h

∑

i

Si . (2)

We have studied the triangular and Kagomé lattices using this Hamiltonian. At first the classical
ground states have been investigated and then the quantum corrections are obtained from a spin-
wave analysis. Let us, at the outset, find the classical ground state for the above Hamiltonian in
different cases.

2.1. Classical ground states

In general the QAFM in more than one dimension like triangular, Kagomé, and pyrochlore
lattices would appear to be highly frustrated. At classical level these systems are highly
degenerate and have non-zero entropy at T = 0 and hence no long-range order is favoured.
In general, at the classical level (equivalently, S → ∞) the spins are assumed to be classical
vectors and the spin–spin interaction energy is minimized with respect to some parameters (like
the angles between the spins) for the Heisenberg Hamiltonian. In this situation several states are
obtained as the possible ground states. In two-dimensional frustrated lattices the well known
candidates having long-range order are the collinear ordering and the spiral ordering. In the
following we determine both the orderings classically.

A triangular plaquette is the basic building block for the two-dimensional frustrated
lattices. Let us consider a single such plaquette oriented in the X–Z plane and set h = 0
for now. In the classical limit the spins can be treated as classical vectors. Let the three spin
vectors make angles 0, θ1, θ2 and interact with each other through bonds of strengths (J, J, αJ )
respectively. Bhaumik and Bose [21] have shown for the HAFM that a single triangular
plaquette, in which one of the three bonds is weaker (α < 1), may have several possible
orderings depending upon the strength of the weaker bond. For the strength of the frustrated
bond less than 0.5 (i.e. α < 0.5), collinear ordering is possible in the classical regime (for both
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Figure 1. Possible collinear orderings in (a) triangular lattice and (b) Kagomé lattice. Here A
represents the up spin and B represents the down spin.

the collinear and spiral order, θ1 = 2θ2). Beyond this, the angle between the spins changes as
θ2 = cos−1(1/2α) so that in the limit α = 1 it becomes 120◦ Néel ordered. As an interesting
example for collinear order in the triangular lattice, the row model is studied. In this model,
a triangular lattice with bonds along a particular direction was assumed to be frustrated. As a
result, in the limit α = 0 it becomes a depleted square lattice. Using spin-wave theory it was
established that quantum fluctuations are not strong enough to destroy the order for α < 0.32.
Keeping one of the bonds weaker we can construct a number of collinear ordered ground states
in the triangular and the Kagomé lattice as shown in figure 1. The particular collinear ordering
shown in figure 1 in the triangular lattice is revisited here because similar states appear in the
phase diagram of the Hubbard model on a triangular lattice [22] and also in the study of the
correlated double-exchange model on a triangular lattice [19]. A collinear order on the Kagomé
lattice is also considered as another example of such a frustrated lattice. In the limit α = 0 the
Kagomé lattice becomes a decorated and depleted ferromagnetic square lattice with opposite
spins sitting at the midpoints of the bonds.

Let us consider now the DM interaction along the Y -direction. Then the classical energy
is given by

ECl = S2

cos φ
[(cos(φ − θ1) + cos(φ − θ2) + cos(φ − θ2 + θ1))] (3)

where ϕ = tan−1(D/J ). The classical ground state is obtained after minimizing the above
expression, and we have the condition

D[α cos 2θ2 − α sin 2θ2 − cos θ2] = sin θ2 (4)

with θ1 = 2θ2 for collinear (and spiral) order as mentioned above. It is easy to show that
for α positive θ2 cannot have values 0 and π as solutions, for non-zero values of D. We can
conclude, therefore, that the collinear order is not possible in two-dimensional topologically
frustrated lattices in the presence of DM interaction for any value of α in the range 1 � α > 0.

Although there is no collinear order, equation (4) admits unique spiral solutions with two
possible orientations: (i) θ1 = 2π/3, θ2 = 4π/3 for D in the negative Y -direction and (ii)
θ1 = 4π/3, θ2 = 2π/3 for D in the positive Y -direction. This implies that the classical ground
state is 120◦ Néel ordered and the direction of the DM interaction changes the chirality of the
order. In figure 2 the two possible ground states are shown.
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Figure 2. Two possible Neél orderings for positive and negative values of DM interaction (acting
perpendicular to the lattice plane) in a triangular lattice.

Figure 3. Two possible Neél orderings in a Kagomé lattice for positive and negative values of DM
interaction acting perpendicular to the lattice plane.

The case of the Kagomé lattice is not so straightforward. A set of corner-sharing triangles
generates the Kagomé lattice. Harris et al [23] had studied this lattice and described it by two
types of configuration which they called q = 0 (in which spins on each sublattices are parallel
to each other and make an angle of 120◦ with the spins on the other two sublattices) and the√

3 × √
3 structure (in which one out of every four sites of an ordered triangular lattice is

removed). In general, determination of the classical ground state in the Kagomé lattice is very
difficult, because of the large number of parameters. Recently, Elhajal et al [23] studied the
same Hamiltonian equation (2) using Monte Carlo simulations. They observed that there is a
possibility of two types of ground states in the q = 0 structure as shown in figure 3. Here too,
the sign of DM interaction changes the chirality of the ground state as in the triangular lattice.

3. Linear spin-wave analysis

3.1. Collinear ordering

In this section we study the stability of collinear order in triangular and Kagomé lattices in the
HAFM H = J

∑
〈i, j〉 
Si · 
Sj . In the collinear ordering two possible spins are considered, A
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Figure 4. The excitation spectrum for collinear ordering: (a) for the triangular lattice at α = 0.12
and (b) for the Kagome lattice at α = 0.10.

(up spins) and B (down spins). The usual Holstein–Primakoff (HP) transformation is, therefore,

S+
A j

= √
2Sa j

S+
B j

= √
2Sa+

j

SZ
A j

= S − a+
j a j

SZ
B j

= −S + b+
j b j .

(5)

3.1.1. Triangular lattice. A particular ordering is shown in figure 1. Here the dashed bonds
are weaker bonds and allow a ferromagnetic ordering. We are considering four different kinds
of spins, two for up spins A1 and A2 and two for down spins B1 and B2. After giving suitable
HP transformations to introduce the four boson operators, the Hamiltonian reads

Hk/J = −8N S2 + 4αN S2 + S

[
(α+

k βk)H0(k)

(
αk

β+
k

)
− 2

]
(6)

where α is the strength of the frustrated bond in the unit of other bonds.

H0(k) =
⎛
⎜⎝

d e+
1 e3 e2

e1 d e2 e3

e+
3 e+

2 d e1

e+
2 e+

3 e+
1 d

⎞
⎟⎠ (7)

and
d = 4 − 2α;
e1 = α

(
eik·a3 + e−ik·a2

) ;
e2 = eik·a3 + e+ik·a2 ;
e3 = 2eik·a1 ;
αk =

(
a1k

a2k

)

βk =
(

b1k

b2k

)
.

(8)

Here r1(1, 0), r2(−1/2,
√

3/2) and r3(−1/2,−√
3/2) are the bond directions through which

the bosons are interacting. The excitation spectrum is shown in figure 4(a). It is observed that
this state is a possible ground state for values of α less than 0.15. Beyond this, the excitation
spectrum becomes imaginary, indicating that this order is destroyed by quantum fluctuations.
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3.1.2. Kagomé lattice. In this geometry, one can identify two types of A-spins (A1 and
A2, say up spins) and one type of B-spin (down spin). These spin operators are transformed
to bosonic operators through the Holstein–Primakoff transformations (equation (5)) and
the corresponding bosons are called a1k, a2k and bk respectively. These bosons are
interacting through the bond directions r1(1, 0), r2(

1
2 ,−

√
3

2 ); r3(
1
2 ,

√
3

2 ). The expression for
the Hamiltonian after Fourier transformation is

H/J = N S2(−4 + 2α) + S
∑

k

[(
α+

k βk
)

H0(k)

(
αk

β+
k

)
− 4 + 2α

]
(9)

where

H0(k) =
[

Z1k Z2k

Z2k Z1k

]
;

Z1k =
( 1 − α α cos k · r1 0

α cos k · r1 1 − α 0
0 0 2

)

Z2k =
( 0 0 eik·r3

0 0 eik·r2

eik·r3 eik·r2 0

)
(10)

and

α+
k =

⎛

⎝
a+

1k

a+
2k

b+
−k

⎞

⎠ ;

βk = α−k .

(11)

The excitation spectrum is shown in figure 4(b). It is observed that the excitation spectrum
remains real all over the Brillouin zone for α � 0.11 (less than the critical value for the
triangular lattice), indicating the stability of LRO. The excitation spectrum in this case is flat in
comparison to the triangular spectra, indicating that there may be other orderings close by in
energy. Excitation of local soft modes discussed in the next section may destroy this particular
collinear order easily.

3.2. Spiral ordering

In the presence of DM interaction, the collinear order disappears while the spiral order remains
a candidate for the LRO state. We consider such canted spin-ordering presently, the spin vectors
being oriented in the X–Z plane as before. To bring the neighbouring spins into the direction
of the same magnetization axis (say the Z -axis), one should rotate all the spins about the Y -axis
and in the new reference frame the spins are defined as

Sx′
i = cos QSx

i + sin QSz
i ;

Sy′
i = Sy

i ;
Sz′

i = −sinQSx
i + cos QSz

i ;
(12)

where Q represents the angle of the spin vectors with respect to the Z -direction. In this new
description we take the Holstein–Primakoff transformation, following the convention of [9],

Sx
i = 1

2

√
2S(ai + a+

i ); Sy
i = 1

2i

√
2S(ai − a+

i ); Sz
i = (S − a+

i ai). (13)

To study the excitation spectrum, we transform the bosons to Fourier space as usual,
ak = 1√

N

∑
i e−i
k·
ri ai , where N is the number of lattice points belonging to one sublattice.
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We consider the nearest-neighbour interaction only. Let J1 and D1 be the strength of nearest-
neighbour Heisenberg interaction and nearest-neighbour DM interaction respectively. Thus we
have finally the Hamiltonian

H =
∑

k,α,β,i

S2(Ji cos Qαβ + Di sin Qαβ)hS

− S

2
(a+

αkaαk + a+
βkaβk)(Ji cos Qαβ + Di sin Qαβ) + ha+

αkaαk

− S

2
(aαka−βke−
ik·ri + a+

αka+
−βke


ik·ri )(Ji cos Qαβ + Di sin Qαβ − Ji )

− S

2
(a+

αkaβke

ik·ri + aαka+

βke−
ik·ri )(Ji cos Qαβ + Di sin Qαβ + Ji ). (14)

(α, β) are the indices for the sublattices A, B and C . Qαβ is the angle between the spin vectors
belonging to the sublattices α and β . The index i above refers to the i th neighbouring site. We
derive Hk in both triangular and Kagomé lattices separately in the following.

3.2.1. Triangular lattice. In the 120◦ Néel ordered state there are three types of spins, called
A (Q = 0), B (Q = 120◦) and C (Q = 240◦) belonging to three different sublattices.
At first we consider the nearest neighbour interaction only. For D1 > 0 Qαβ is taken as
4π/3 and for D1 < 0 Qαβ is 2π/3. In the following we consider the first case only. The
ground states corresponding to both the chiralities have thus been taken into account. Every
spin belonging to one particular sublattice interacts with the other through the bond directions
r1 (1, 0), r2 (−1/2,

√
3/2) and r3 (−1/2,−√

3/2). We represent the bosons corresponding to
the sublattices A, B and C by a, b and c and we have

H = 9

2
S2(−J1 + √

3D1) + 3hS + 3S

2

∑

α,β,k

[
(α+

k βk)H0(k)

(
αk

β+
k

)
− 3C1

]
(15)

where

H0(k) =
[

M1 + M2 M3

M3 M1 + M2

]
; (16)

M1 =
[C1 0 0

0 C1 0
0 0 C1

]
; M2 = C2

[ 0 z z∗
z∗ 0 z
z z∗ 0

]
; M3 = C3

[ 0 z z∗
z∗ 0 z
z z∗ 0

]
;

(17)

with

z = 1
12 (e

−ik·r1 + e−ik·r2 + e−ik·r3 ) (18)

C1 = J1 + √
3D1 − h

3S
;

C2 = J1 + √
3D1;

C3 = −3J1 − √
3D1;

(19)

α+
k =

( ak

bk

ck

)
; βk = α−k . (20)



A study of long-range order in certain two-dimensional frustrated lattices 8259

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
1.5

1
0.5

0 0
0.5

1
1.5

2
2.5

Kx
Ky

1.5
1

0.5
0 0

0.5
1

1.5
2

2.5

Kx
Ky

w w

2.4

2.2

2

1.8

1.6

(a) (b)

Figure 5. Excitation spectra of the 120◦ order for the triangular lattice with J1 = 1, D1 = 0.3 for
(a) h = 0 and (b) h = −1.

The 6 × 6 matrix H0(k) can be diagonalized analytically by a general Bogoliubov
transformation. It is interesting to note that all the 3 × 3 blocks building the matrix H0(k)

are permutation matrices and thus can be diagonalized simultaneously in the basis

u1 = ( 1 1 1 ) ; u2 = ( 1 j j 2 ) ; u3 = ( 1 j 2 j )

and j = e−2π i/3. (21)

The appearance of cubic roots of unity is the manifestation of the ternary symmetry of the
problem. We introduce the generalized Bogoliubov transformation as

[
A

B+

]
= T

[
α

β

]
. (22)

To preserve the boson commutation relations and to map H0(k) onto a diagonal matrix

the column of the transformation matrix is written as

[
λi ui

μi ui

]
, where the coefficients λi and

μi satisfy the hyperbolic orthonormalization conditions |λi |2 − |μi |2 = 1, etc. So once three
column vectors are found, the remaining three vectors are obtained by the action of −σx , the
first Pauli spin matrix. In this way the transformation matrix T is obtained. The diagonalized
Hamiltonian then reads

H = 9

2
S2(−J1 − √

3D1) + 3hS + 3S

2

∑

k

[�+
k HD�k − 3C1] (23)

or

H = 9

2
S2(−J1 − √

3D1) + 3hS + 3S
∑

k.L=1,2,3

ωL A+
L AL + 3S

3

∑

k

(ω1 + ω2 + ω3 − 3C1),

(24)

where

ωi = √[C1 + ρi (C2 + C3)][C1 + ρi (C2 − C3)] (25)

and

ρ1 = z + z∗; ρ2 = z j + z∗ j 2; ρ3 = z∗ j + z j 2. (26)
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(a) (b)

Figure 6. (a) Variation of the ground state energy for the triangular lattice w.r.t. D1 at h = 0 (upper)
and h = −1.0 (lower). (b) The sublattice magnetization versus D1 at h = 0 (lower) and h = −0.3
(upper) for J1 = 1 and S = 1/2.

The excitation spectra are shown in figure 5. It is seen that the excitation spectrum is real and
positive over the entire Brillouin zone. The excitation spectra have gaps at the centre of the
Brillouin zone which are estimated as

�1(0,0) =
√

(h/3S)(−3J1 + √
3D1 − h/(3S))

�2,3(0,0) =
√

(h/3S + 3
√

3/2D1 − 3J1/2)(
√

3D1 + h/(3S)).

(27)

The ground state energy per bond including zero-point fluctuations is

E0 = 1

2
S2(−J1 − √

3D1) + hS

3
+ S

2N

∑

k

(ω1 + ω2 + ω3) + S

2

(
−J1 − √

3D1 + h

3

)
.

(28)

In the above expression the last two terms give the quantum correction to the classical
ground state energy. In figure 6(a) we plot the ground state energy as a function of D1 and it is
observed that the total ground state energy decreases as D1 increases. There is also a reduction
in the ground state sublattice magnetization due to quantum fluctuations, which is calculated
per site as

m = −1

2
+ 1

2N

∑

i,k

C1 + C2ρi

ωi (k)
. (29)

In figure 6(b) we plot the sublattice magnetization (〈Sz〉 = S − m; S = 1/2) as a function of
D1 and this also increases as D1 increases. If we introduce the second-neighbour interaction
(spin–spin interaction within the same sublattice) we have the Hamiltonian in the same form
with modified constants as

C ′
1 = J1 + √

3D1 − h

3S
− 2J2 + 2J2

3

∑
cos(k · si)

C ′
2 = J1 − √

3D1;
C ′

3 = −3J1 − √
3D1;

(30)

where s1 = r3 − r2; s2 = r1 + r3; s3 = r1 + r2.
The corresponding excitation spectra are shown in figure 7. The nature of the excitation

spectrum remains similar to figure 5.
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(a) (b)

Figure 7. The excitation spectra for 120◦ ordering on a triangular lattice with D1 = 0.5, J1 = 1
and J2 = 0.2 (a) for h = 0 and (b) h = −0.3.

3.2.2. Kagomé lattice. It has been observed from the results of Monte Carlo simulation that
there is a possibility of two types of ground state (q = 0) in the Kagomé lattice depending upon
the direction of the DM interaction. Three types of sublattices, A, B and C, describe the spins
of the lattice. Each spin interacts with the spins of the other sublattice via the nearest neighbour
Heisenberg (of strength J1) and DM (of strength D1) interactions along the bond directions
r1(1, 0), r2(

1
2 ,

√
3

2 ) and r3(
1
2 ,

√
3

2 ). For one of the ground states (say, D1 positive) Qαβ is 2π/3
or 4π/3 depending on the chirality of the nearest-neighbour spin configuration and for the other
ground state (D1 negative) they are interchanged. So ultimately we have

H = C + S

4

∑

α,β,k

[
(α+

k βk)H0(k)

(
αk

β+
k

)
− d

]
(31)

where

αk =
( ak

bk

ck

)
; βk = α−k . (32)

The new Hamiltonian to be diagonalized is

H0(k) =
[

M1 M2

M2 M1

]
; (33)

where

M1 =
[ d e+

3 e2

e3 d e+
1

e+
2 e1 d

]
; (34)

M2 =
[ 0 f +

3 f2

f3 0 f +
1

f +
2 f1 0

]
(35)

and

C = 3S
∑

k

J1S − 2h (36)
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d = −12J1 + 12h + 12h

S

ep = J1 cos(k · rp) + √
3D1i sin(k · rp);

f p = −3J1 cos(k · rp) + √
3D1i sin(k · rp).

(37)

This Hamiltonian cannot be diagonalized analytically. Preserving the bosonic commutation
relation the above Hamiltonian is diagonalized numerically. It is observed that one of the
eigenfrequencies in the spin-wave spectrum remains nondispersive. This dispersionless mode
is due to the excitation of zero-energy local modes. Classically, for spins lying in the X–Z
plane, these modes correspond to tipping of spins alternately in and out of the plane. If the
tipping angle is θ , the energy of such a mode is proportional to θ4 with a positive coefficient.
Thus in the classical case anharmonicity apparently stabilizes the soft modes, and presumably
this will also be the case for the quantum spins.

Adding the second-neighbour interaction (of strength J2 and D2, the bond directions being
t1 = r3 − r2; t2 = r1 + r3; t3 = r1 + r2) and third-neighbour interaction (of strength J3; the
bond directions being s1 = 2r1; s2 = 2r2; t3 = 2r1 − 2r2) leads to some interesting results.
It is interesting to note that there are two inequivalent sets of third neighbours, one is obtained
by two nearest-neighbour steps and the other (on opposite sides of the hexagon) by three such
steps. Following Harris et al we also include J3 only (the first type) and the latter coupling
is neglected. In the third-neighbour term there is no effect from DM interaction because the
interaction is among spins in the same sublattice. Then the above expressions (34)–(37) are
redefined as

M1 =
[ d1 e+

3 e2

e3 d2 e+
1

e+
2 e1 d3

]
; (38)

M2 =
[ 0 f +

3 f2

f3 0 f +
1

f +
2 f1 0

]
(39)

c = −3
∑

k

S2(J1 + J2 − 3J3) (40)

d = −12(J1 + J2 − 2J3) + 12h + 12h

S

d1 = 4(J1 + J2) − 8J3(1 − 1
2 [cos(k · s2) + cos(k · s3)]) − 4h

S

d2 = 4(J1 + J2) − 8J3(1 − 1
2 [cos(k · s3) + cos(k · s1)]) − 4h

S

d3 = 4(J1 + J2) − 8J3(1 − 1
2 [cos(k · s1) + cos(k · s2)]) − 4h

S

(41)

ep = J1 cos(k · rp) + J2 cos(k · tp) + √
3D1i sin(k · rp) + √

3D2i sin(k · tp);
f p = −3(J1 cos(k · rp) + J2 cos(k · tp)) + √

3i(D1(sin(k · rp) + D2(sin(k · tp))

p = 1, 2, 3.

(42)

The excitation spectra have been obtained by numerical diagonalization of the above matrix
preserving their commutation relations. In figure 8 we plot the excitation spectrum for the
Kagomé lattice. It is observed that all three branches of each spectrum are dispersive and have
gaps.

The ground state energy per site can be calculated from the expression

E0

3N
= −S(S + 1)(J1 + J2 − 2J3) − h(S − 1) + S

8

(
1

3N

∑

k

ω1 + ω2 + ω3

)
. (43)
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Figure 8. (a) Excitation spectra for the Kagomé lattice with 120◦ ordering, J1 = 1, J2 = 0.2, J3 =
0.1, D1 = 0.8, h = −0.2; (b) the same with J1 = 1, J2 = 0.2, J3 = 0.1, D1 = D2 =
0 & h = −0.1, (c) for J1 = 1, J2 = 0.2, J3 = 0.1, D1 = D2 = 0.2 and h = 0 and (d) for
J1 = 1, J2 = 0.2, J3 = 0.1, D1 = D2 = 0.2, h = −0.1.

(a) (b)

E
0

E
0

Figure 9. Variation of the ground state energy for Kagomé lattice: (a) with D1 for J1 =
1; J2 = 0.1; J3 = 0.05; D2 = 0.1; h = 0,−0.1,−0.2 (upper to lower); (b) with J3 for
J1 = 1; D1 = 0; D2 = 0.0; h = 0, J2 = 0, 0.1, 0.2 (upper to lower).

Here ω are the three branches of the excitation spectrum. In figure 9 we show how the ground
state energy varies as the Heisenberg and the DM interaction strengths are varied.
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4. Conclusion

To summarize, in this paper we have considered the possibility of long-range order in two
geometrically frustrated lattices in two dimensions, namely the Kagomé and triangular lattices,
in the isotropic and anisotropic Heisenberg Hamiltonians. It is observed that a particular
collinear ordering is possible in these lattices if one of the three bonds in each triangular
plaquette is allowed to be frustrated. From linear spin-wane analysis a small parameter
regime is identified where the collinearly ordered state is the possible ground state. Quantum
fluctuation destroys such collinear order beyond α = 0.15(0.11) for the triangular (Kagomé)
lattice. It has also been observed that anisotropic DM interaction disfavours collinear order in
the ground state. We show that the Heisenberg Hamiltonian in the presence of out-of-plane
DM interaction and in-plane magnetic field leads to a possible ground state with spiral ordering
(angle 120◦ between the spins). There are states with different chiralities depending upon
the direction of the DM interaction. The excitation spectrum has been obtained analytically
for the nearest-neighbour Heisenberg Hamiltonian in the triangular lattice and it is found to
have two degenerate modes. The magnetic field or further-neighbour interaction removes the
degeneracy. The effect of DM interaction is to introduce a gap in one of the branches of the
excitation spectrum while the magnetic field, as expected, introduces a gap in all the branches.
We also calculated the ground state energy and the sublattice magnetization analytically for
the nearest-neighbour model with DM interaction and the magnetic field, and we observe
that the ground state energy decreases and the sublattice magnetization increases as the DM
interaction increases. This implies that LRO stabilizes with the increase of the strength of the
DM interaction in these lattices.

The nearest-neighbour Heisenberg Hamiltonian on the Kagomé lattice has a dispersionless
branch in the excitation spectrum, indicating the presence of soft modes, which destabilize the
120◦ ordering in its ground state. Inclusion of further-neighbour interactions stabilizes LRO
as the flat band becomes dispersive. We have seen that the DM interaction in the presence of
magnetic field stabilizes the soft modes in the near-neighbour interaction regime. The further-
neighbour Heisenberg model along with the DM interaction has also been taken into account.
In this case, the dispersionless branch disappears and a gap opens up in the excitation spectrum
as the magnetic field is applied. An estimate of the ground state energy is made for different
values of further-neighbour interactions and the DM interactions. Our calculations therefore
imply that although the Heisenberg antiferromagnetic model involves disordered states in two-
dimensional frustrated lattices there are possible long-range ordered ground states in models
that include anisotropic and further-neighbour interactions.
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